
Relieving Capacity Limits on FPGA-Based
SAT-Solvers

Leopold Haller
Computing Laboratory

Oxford University, United Kingdom
leopold.haller@comlab.ox.ac.uk

Satnam Singh
Microsoft Research

Cambridge, CB3 0FB, United Kingdom
satnams@microsoft.com

Abstract—FPGA-based SAT solvers have the potential to
dramatically accelerate SAT solving by effectively exploiting fine-
grained pipeline parallelism in a manner which is not achievable
with regular processors. Previous hardware-based approaches
have relied on on-chip memory resources to store data which,
similar to a CPU cache, are very fast, but are also very limited
in size. For hardware-based SAT approaches to scale to real-
world instances, it is necessary to utilise large amounts of off-chip
memory. We present novel techniques for storing and retrieving
SAT clauses using a custom multi-port memory interface to off-
chip DRAM which is connected to a processor core implemented
on a medium sized FPGA on the BEE3 system. Since DRAM is
slower than on-chip memory resources, the parallelisation which
can be achieved is limited by memory throughput. We present
the design and implementation of a new parallel architecture
that tackles this problem and estimate the performance of our
approach with memory benchmarks.

I. INTRODUCTION

SAT solvers have been established as popular black-box
reasoning techniques in a number of application areas, most
notably, formal verification of hardware and software. This
can be partially attributed to the fast rise in solving efficiency
over the last 15 years. One possibility of increasing solving
efficiency further is to make use of the fine-grained parallelism
that is offered by hardware platforms. Previous approaches
have relied on on-chip memory resources which are fast and
allow for parallelised access, but impose strict limits on the
size of input instances.

In this paper, we explore the feasibility of building a
hardware-based SAT solver that directly accesses off-chip
DRAM memory resources. This has the advantage that the size
of SAT instances solved by our hardware solver are orders of
magnitude larger than what is possible when storing instance
data using only on-chip memory. The disadvantage is that
it creates a memory bottleneck due to the memory access
characteristics of DRAM. We present an implementation of
a Boolean constraint propagation (BCP) unit on the BEE3
multi-FPGA board.

Our design uses novel techniques for clause retrieval and
propagation that utilise fine-grained parallelism in spite of this
bottleneck. For the clause retrieval step, we adapt the BCP
algorithm to independently access multiple memory channels.
The unique advantage of our approach is that it does not
impose the strict instance size limits that are common with

other hardware-based SAT solvers. The evaluation of our
implementation is work in progress. We present initial memory
benchmarks to estimate the feasibility of our approach.

II. RELATED WORK

A survey of techniques published until 2004 is given in
[1]. Early work on reconfigurable hardware SAT focuses
on instance specific approaches (e.g., [2], [3], [4], [5]), in
which a circuit is generated specific to a single SAT instance.
This requires computationally expensive circuit resynthesis
and reconfiguration of the hardware once a new instance
is to be evaluated and severely limits the size of possible
input instances. Application specific hardware solvers do not
require reconfiguration between solving instances. A popular
approach is to implement BCP, the most work intensive step of
the popular DPLL procedure, on hardware, and handle more
complex tasks such as conflict analysis and decision heuristics
in software [6], [7], [8], [9]. Fully functional hardware solvers
are presented in [10], [11], [12].

Capacity is an issue for all these solvers. Examples of more
large-scale approaches include the BCP accelerator presented
in [9], which can accommodate 64K variables and equally
many clauses of length 9, or the solver in [12], which can
accommodate 10K variables and 280K fixed-length clauses.
Many SAT instances of practical interest are not representable
within these restrictions.

A number of methods have been proposed to increase the
capacity of hardware-based solvers: Examples include using a
larger FPGA [4] or multiple FPGAs [7], [8], [9], splitting the
problem into small subproblems [5], partitioning the instance
into small-sized frames that are loaded on-demand [12], or
combining a software solver with a hardware solver for small-
size subproblems [10]. Our approach, in contrast, explores the
feasibility of directly accessing off-chip memory resources.

III. MEMORY ACCESS PATTERNS IN SAT SOLVERS

In FPGA designs, very small amounts of data can be stored
on arrays of state-holding flip-flops. Larger amounts can be
stored in dedicated Block RAM (BRAM) modules on the
FPGA chip, or off-chip on external RAM. On-chip memory is
very limited, with typical sizes smaller than 4MB, but access
is fast and can be performed in parallel. Access to DRAM

read watch list read clause read clause
t

linear linear linear

random

Fig. 1. Watch list and clause read operations in Algorithm 1

memory is performed via an external memory controller using
an asynchronous protocol. We have used a freely available
controller presented in [13] for our implementation. The
time required for a single read and write command depends
on a number of factors including access locality, memory
clock speed and the implementation of the memory controller.
Random accesses are, on average, significantly slower than
linear streaming access.

Most modern SAT solvers are based on the Conflict Driven
Clause Learning (CDCL) framework, which utilizes clause
learning and backjumping ([14], [15]), and spend most of the
runtime in Boolean Constraint Propagation (BCP). BCP can
be efficiently implemented using a watched-literal scheme [16]
where two literals in each clause are observed for changes.
Literal watching can be implemented by associating each
literal with a list, which records the clauses that have to be
visited when the literal is contradicted during search.

Algorithm 1 The BCP step
1: procedure Propagate(l : literal)
2: wl← readWatchList(l) . R
3: while HasNextClause(wl) do
4: c← readNextClause(wl) . R
5: v ← readVariableValues(c) . R
6: s← analyse(v, c)
7: if s = Conflict then return Conflict
8: else if s = Deduction then writeDeducedValue() . W
9: changeWatchLits() . W

10: return Unknown

In Algorithm 1, the inner core of the BCP algorithm
is presented in a way that emphasizes memory accesses.
ReadVariableValues fetches the values assigned to variables
occurring in a clause. The Analyse function determines the
status of a clause and returns a result that indicates if an action
needs to be taken. Finally, ChangeWatchLits modifies watch
lists in accordance with the two-watched literal scheme.

The memory access pattern for reads is illustrated in Figure
1. Reads are issued in a linear fashion on successive addresses,
with intermittent single random accesses. We will refer to this
access pattern as quasi-linear.

In order to estimate the viability of using DRAM in a
reconfigurable-hardware SAT solver, we compared the effi-
ciency of quasi-linear memory accesses on the BEE3 platform
with the same access pattern implemented in software and run
on an average PC. Since modern CPUs have large multi-level
caches which allow fast access to recently used data, it is not a
priori clear that the performance is similar, even when similar
types of main memory are used.

For our experiments and implementation of the BCP core,
we use a pre-production version of the BEE3 FPGA board
which has four XC5VLX110T FPGAs. Each FPGA has two

PC (400MHz RAM) Virtex5 (250MHz RAM)
rnd./lin. 93.7 / 1066.7 44.4 / 1066.7

quasi-lin. 691.9 984.6

TABLE I
AVERAGE MEMORY ACCESS SPEED (MB/S)

independent memory channels connected to dual channel
DDR2-533 RDIMMs with each channel populated with 8GB
of memory (giving a total of 64GB for the whole system).
The FPGAs are connected in a ring and a cross-over board
also provides direct connections between the other two FP-
GAs. Although this platform was primarily developed for
the emulation of multi-core processors we believe it is an
interesting platform for hardware SAT-solving because of the
large amount of off-chip memory and the ability to use eight
independent memory channels to experiment with hardware
parallelisation techniques.

The BEE3 system also provides a variety of I/O ports
including for each FPGA an RS232 serial port, dual 10GBase-
CX4 Ethernet interfaces, a single PCI-Express x8 end-point
slot and a Gigabit Ethernet port. We use the Gigabit Ethernet
port to communicate with a host PC running Windows 7.

We compared DDR2 memory access speed on a 3GHz CPU
with memory clocked at 400MHz and a Virtex-5 FPGA with
memory clocked at 250MHz. Random address values were
precomputed and read (linearly) from an array in the software
case, and generated on-the-fly in the hardware case. The
memory controller has a granularity of 256 bit per memory
access (288-bits including error correction bits). Hence, for the
linear and quasi-linear access cases, a single read and write
operation can manipulate 8 integers of width 32 at once.

The test setup consisted of reading and incrementing
256MB of 32 bit integers. The results are shown in Table
I, which shows read/write speeds for a completely random,
linear and quasi-linear access patterns. The quasi-linear access
pattern reads 64 words linearly before performing a random
address jump. As can be seen from the table, the access speed
for quasi-linear access is comparable on the two platforms, de-
spite the lower memory clock speed of the FPGA. Since quasi-
linear accesses are characteristic for the DPLL algorithm, this
result gives some preliminary indication that a hardware-based
implementation of DPLL with direct DRAM access is feasible.

IV. BUILDING A DRAM-BASED BCP-CORE

Since straight-forward highly parallel approaches are not
practicable when accessing DRAM directly, we base our im-
plementation on modern software CDCL solvers and enhance
it with fine-grained parallelism where possible. The only data
which we store on-chip are the current value of variables,
all other data is kept in off-chip DRAM. In this situation,
it becomes necessary to explore parallelisation techniques that
are still viable in the context of the memory bottleneck that is
created by off-chip data storage.

Memory channel A

Clauses

WL 1A

...

WL −1A

WL −nA

Memory channel B

Clauses

WL 1B

...

WL −1B

WL −nB

WL 1A WL 1B

︷ ︸︸ ︷WL 1

−1 ∨ . . . ∨ −n
w.lit 1 = −1

w.lit 2 = −n

Local propagation

Fig. 2. Parallel watched literal scheme

A. The Parallel Watched-Literal Scheme

While DRAM access is inherently sequential, the BEE3
board retains some options for concurrent off-chip memory
operations by offering multiple RAM channels, each of which
is connected to its own RAM chip and can be controlled
independently.

A key aspect of our approach is the ability to exploit
two independent memory channels on each of the FPGAs,
since it maps naturally to the two-watched literal scheme. In
the watched literal scheme, two literals of each clause are
designated and watched for changes. This is implemented by
keeping a list for each literal, and appending all clauses to it
in which it is being watched.

In our BCP implementation, we parallelise the two-watched-
literal scheme by watching each of the two literals of a single
clause on a separate memory channel (see Figure 2). Each
literal is associated with two watch lists that are stored on
separate channels A and B. Clause data is stored redundantly
on the two memory chips. This allows to localise the inner
core of BCP to require only memory accesses on a single
memory channel. When the routine in Algorithm 1 is executed,
the two partial watch lists are fetched independently on the
two memory chips. After this step, the while-loop at line 3
of the algorithm can be executed completely in parallel by
performing propagation local to data stored on each of the
memory channels.

Redundant storage of clause data creates a memory over-
head that is not significant in view of the large amount of
available off-chip memory, but can speed up the processing
of a watch list by up to 100%. By dividing the watched
literals between the two memory channels, the average length
of watch lists on each channel will be equal.

B. Parallel Inference

When relying on off-chip memory resources, clauses need
to be read sequentially after the watch list is retrieved. The
amount of possible parallelisation in analysing clauses is
directly limited by the rate at which clauses can be streamed
from memory.

After a clause has been retrieved, its variables’ values have
to be read (line 5 in Algorithm 1). The actual analysis step (line
6) can then be performed in a single clock cycle by a dedicated
analysis circuit. We store variable values on on-chip memory
resources. A value can therefore be accessed in a single cycle.
Large clauses might still require a number of cycles to fill
up all variable values of interest. Depending on how fast a

issue read receive clause read values analyse

issue read receive clause read values analyse

Fig. 3. Timing of the clause analysis step

clause can be streamed from memory and how many variable
values need to be fetched before the status of a clause can be
determined, there can be an overlap with new clauses arriving
while a previous clause is still fetching variable values, as
illustrated in Figure 3.

To speed up these cases, we have implemented a limited
form of inference parallelism. The clause analysis step is
performed by propagator cores, which are assigned clauses
that arrive from memory. Once a core has received a clause,
it starts issuing requests for variable values to a common bus,
and listening for useful variable values on another bus. Once
enough variable values have been received to determine clause
status, the core sets a ready flag and waits for the next clause
assignment. In most cases, a core does not need to fetch all
variable values in order to determine the status of a clause.
In case a clause is either satisfied or is neither conflicting nor
leads to a deduction, the result can be determined early.

The number of propagator cores is a parameter in our
design. Once the analysis speed outpaces clause throughput
no further efficiency gains can be obtained by adding cores. In
our implementation, we have therefore instantiated the design
with two propagation cores per memory channel.

C. Algorithmic Description of the BCP step

We will now give an algorithmic description of our solver,
before discussing the implementation architecture. We present
an overview in Algorithm 2. The procedures BCP and BCP-
Core correspond to the hardware modules of the same name
that are discussed in the next section.

Algorithm 2 Algorithmic description of hardware BCP
1: procedure BCP(l : literal)
2: q ← {l}
3: while |q| > 0 do
4: p← pop(q) . pop queue
5: BCPCore(p,A), BCPCore(p,B) . execute in parallel
6: if conflict(A) ∨ conflict(B) then return Conflict
7: append(q, deductions(A) ∪ deductions(B))
8:
9: procedure BCPCore(l : literal, X : memory channel)

10: wl← issueReadWatchList(l,X) . watch list fetch
11: while ¬watchListReceived() do
12: addr ← waitForClauseAddress();
13: issueClauseRead(addr,X) . clause fetch
14: while ¬allClausesReceived(wl) do . clause propagation
15: c← waitForClause(); assignToFreePropagationCore(c)
16: writeBackWL(l,X) . write new watch list for l
17: appendWatches(X) . append changed watched literals

In the BCP step, propagation literals are incrementally taken
from a queue, after which BCPCore is executed in parallel on
memory channels A and B. Each BCPCore reads its (partial)
watch list from memory and issues “clause read” commands
as soon as clause addresses are received. Arriving clause data

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

BCP_CORE
controller

propagator

propagator

CDCL_MEM
interface

BCP_CORE

value
change

BCP
controller

memory
controller
channel A

memory
controller
channel B

FPGA

DRAM
channel A

DRAM
channel B

BEE3 Board

Fig. 4. Implementation Architecture

is distributed to the propagator cores which record their results
for later evaluation. The addresses of those clauses which
remain in the watch list (e.g., already satisfied clauses) are
written back to memory in the call to WriteBackWL. The
addresses of all other clauses are appended to their new
watch lists in the AppendWatches step. Deduction results are
recorded and processed in the main BCP procedure. If no
conflict is found, the procedure appends new deduction results
to the BCP queue.

D. Implementation Description

In our implementation, we use external DRAM to store
clause and watch list information, while we use on-chip
BRAM to store variable values. We use an openly available
DDR2 memory controller [13].

The architecture of our BCP module is presented in Figure
4. The “BCP controller” block corresponds to the BCP proce-
dure in Algorithm 2. It manages a BCP queue, issues propagate
commands to the two “BCP CORE” modules, and controls
the modification of watch lists. The two BCP cores receive
propagation literals from the BCP controller, issue memory
requests to the “CDCL MEM interface” module and distribute
clauses on their partial watch list between free “propagator”
cores. The propagator units access a common bus to read literal
values.

In our BEE3 implementation, we limit the clause size to
24 literals to enable efficient propagation, and impose a limit
on total size of watch lists to 256 clause addresses (128 per
memory channel). This allows storage of instances with up to
1 million variables and 70 million clauses. We have validated
our approach in simulation and synthesized our circuit with
a memory clock frequency of 200 MHz and control logic
clocked at 100 MHz. Obtaining benchmark results is work
in progress.

V. CONCLUSION

In this paper we have presented an implementation of a
Boolean constraint propagation core that does not rely on
limited on-chip memory resources to store instance data,
but instead directly accesses off-chip DRAM. Based on the
memory access behaviour of CDCL solvers and the character-
istics of DRAM, we have proposed techniques that introduce
parallelism in spite of the memory bottleneck created by using
off-chip resources. The evaluation of our implementation is
work in progress. Our initial exploration is encouraging and
we conclude that there is a good potential for implementing
high performance parallel hardware SAT solvers by carefully
designing and tuning the circuits that make up the memory
hierarchy.

Future work includes the completion of the system which
drives the parallel hardware BCP core by adapting an existing
SAT-solver like MiniSAT and executing it on an embedded
soft processor on the Virtex-5 FPGA or on an embedded hard
core processor like a PowerPC or ARM core. Currently we
use just one of the four FPGAs on the BEE3 system and in
future work we hope to exploit all four FPGAs.

REFERENCES

[1] I. Skliarova and A. B. Ferrari, “Reconfigurable hardware SAT solvers:
A survey of systems,” IEEE Trans. Computers, vol. 53, no. 11, pp.
1449–1461, 2004.

[2] P. Zhong, M. Martonosi, P. Ashar, and S. Malik, “Using configurable
computing to accelerate Boolean satisfiability,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 18, no. 6, pp. 861–868, 1999.

[3] T. Suyama, M. Yokoo, H. Sawada, and A. Nagoya, “Solving satisfiability
problems using reconfigurable computing,” IEEE Trans. VLSI Syst.,
vol. 9, no. 1, pp. 109–116, 2001.

[4] M. Platzner and G. D. Micheli, “Acceleration of satisfiability algorithms
by reconfigurable hardware,” in FPL, ser. Lecture Notes in Computer
Science, R. W. Hartenstein and A. Keevallik, Eds., vol. 1482. Springer,
1998, pp. 69–78.

[5] M. Abramovici and J. T. de Sousa, “A SAT solver using reconfigurable
hardware and virtual logic,” J. Autom. Reasoning, vol. 24, no. 1/2, pp.
5–36, 2000.

[6] J. de Sousa, J. P. Marques-Silva, and M. Abramovici, “A config-
ware/software approach to SAT solving,” in FCCM, 2001.

[7] A. Dandalis and V. K. Prasanna, “Run-time performance optimization of
an fpga-based deduction engine for SAT solvers,” ACM Trans. Design
Automation of Electronic Systems, vol. 7, no. 4, pp. 547–562, Oct. 2002.

[8] J. D. Davis, Z. Tan, F. Yu, and L. Zhang, “Designing an efficient
hardware implication accelerator for SAT solving,” in SAT, ser. Lecture
Notes in Computer Science, H. K. Büning and X. Zhao, Eds., vol. 4996.
Springer, 2008, pp. 48–62.

[9] ——, “A practical reconfigurable hardware accelerator for boolean
satisfiability solvers,” in DAC, L. Fix, Ed. ACM, 2008, pp. 780–785.

[10] I. Skliarova and A. B. Ferrari, “A software/reconfigurable hardware sat
solver,” IEEE Trans. VLSI Syst., vol. 12, no. 4, pp. 408–419, Apr. 2004.

[11] M. Waghmode, K. Gulati, S. P. Khatri, and W. Shi, “An efficient, scalable
hardware engine for Boolean satisfiability,” in ICCD. IEEE, 2006.

[12] K. Gulati, S. Paul, S. P. Khatri, S. Patil, and A. Jas, “Fpga-based
hardware acceleration for boolean satisfiability,” ACM Trans. Design
Autom. Electr. Syst., vol. 14, no. 2, 2009.

[13] C. Thacker, “DDR2 controller for the BEE3,”
http://research.microsoft.com/en-us/downloads/12e67e9a-f130-4fd3-
9bbd-f9e448cd6775.

[14] R. J. Bayardo and R. Schrag, “Using CSP look-back techniques to solve
real-world SAT instances,” in AAAI/IAAI, 1997, pp. 203–208.

[15] J. P. Marques-Silva and K. A. Sakallah, “GRASP - a new search
algorithm for satisfiability,” in ICCAD, 1996, pp. 220–227.

[16] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in DAC. ACM, 2001, pp.
530–535.

